Wireless Access Point

- This application note is applicable to our **Ubuntu/Linux** Platforms.

HostAP Mode Compatibility List

<table>
<thead>
<tr>
<th>Wifi module name (USB VID:PID)</th>
<th>ODROID-C1</th>
<th>ODROID-C2</th>
<th>ODROID-XU3/4</th>
<th>ODROID-N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ubuntu 16.04</td>
<td>Ubuntu 18.04</td>
<td>Ubuntu 16.04</td>
<td>Ubuntu 16.04</td>
</tr>
<tr>
<td></td>
<td>v2.2-3.10.y</td>
<td>v3.0-3.10.y</td>
<td>v2.4-3.14.y</td>
<td>v3.0-3.16.y</td>
</tr>
<tr>
<td>0 - Ralink RT5370N (0x148F:0x5370)</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td>3 - Realtak RTL8188CUS (0x0BDA:0x8176)</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td>4 - Ralink RT5572N (0x148F:0x5572)</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td>5 - Realtak RTL8812AU (0x0BDA:0x8812)</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td>5A - Realtak RTL8811AU (0x0BDA:0xa811)</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
</tbody>
</table>

wpa_supplicant Mode Compatibility List

<table>
<thead>
<tr>
<th>Wifi module name (USB VID:PID)</th>
<th>ODROID-C1</th>
<th>ODROID-C2</th>
<th>ODROID-XU3/4</th>
<th>ODROID-N2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ubuntu 16.04</td>
<td>Ubuntu 18.04</td>
<td>Ubuntu 16.04</td>
<td>Ubuntu 16.04</td>
</tr>
<tr>
<td></td>
<td>v2.2-3.10.y</td>
<td>v3.0-3.10.y</td>
<td>v2.4-3.14.y</td>
<td>v3.0-3.16.y</td>
</tr>
<tr>
<td>0 - Ralink RT5370N (0x148F:0x5370)</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td>3 - Realtak RTL8188CUS (0x0BDA:0x8176)</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td>4 - Ralink RT5572N (0x148F:0x5572)</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td></td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
<td>confirm</td>
</tr>
<tr>
<td>5 - Realtak RTL8812AU (0x0BDA:0x8812)</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td>5A - Realtak RTL8811AU (0x0BDA:0xa811)</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
<tr>
<td></td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
<td>not working</td>
</tr>
</tbody>
</table>

ODROID Wireless Cards Information

Almost all the wireless card have capability of configuration as to be Access Point.

```bash
root@odroid:~# sudo iw list
```

If there is **“AP”** in the list of **“Supported interface modes”**, your device will support the Access
Point mode.

Supported interface modes:
* IBSS
* managed
* AP
* AP/VLAN
* WDS
* monitor
* mesh point

Refer to the below contents of informations of each wireless interface.

 Wifi Module 0

Manufacturer: Mediatek Ralink
Part name: RT5370N
Type: chip
Number of busses: 1
Bus(es): USB 2.0
Number of bands: 1
Band(s): 2.4GHz
Data rate: 150Mbps
MIMO configuration: 1x1:1 (1T1R)
IEEE 802.11 PHY Modes: b,g,n

Bus 005 Device 002: ID 148F:5370 Ralink Technology, RT5370 Wireless Adapter

 Wifi Module 3

Manufacturer: Realtek
Part name: RTL8188CUS
Type: chip
Number of busses: 1
Bus(es): USB 2.0
Number of bands: 1
Band(s): 2.4GHz
Data rate: 150Mbps
MIMO configuration: 1x1:1 (1T1R)
IEEE 802.11 PHY Modes: b,g,n

Bus 001 Device 003: ID 0bda:8176 Realtek Semiconductor Corp. RTL8188CUS 802.11n WLAN Adapter
Wifi Module 4

Manufacturer: Ralink
Part name: RT5572N
Type: chip
Number of busses: 1
Bus(es): USB 2.0
Number of bands: 2
Band(s): 2.4GHz, 5GHz
Data rate: 300Mbps
MIMO configuration: 2x2:2 (2T2R)
IEEE 802.11 PHY Modes: a,b,g,n

Bus 001 Device 006: ID 148f:5572 Ralink Technology, Corp. RT5572 Wireless Adapter

Wifi Module 5

Manufacturer: Realtek
Type: chip
Number of busses: 2
Bus(es): USB 2.0 / USB 3.0
Number of bands: 2
Band(s): 2.4GHz, 5GHz
Data rate: 300Mbps
MIMO configuration: 2x2:2 (2T2R)
IEEE 802.11 PHY Modes: a,b,g,n,ac

Bus 003: ID 0bda:8812 Realtek Semiconductor Corp. RTL8812AU 802.11a/b/g/n/ac WLAN Adapter

Wifi Module 5A

Manufacturer: Realtek
Type: chip
Number of busses: 1
Bus(es): USB 2.0
Number of bands: 2
Band(s): 2.4GHz, 5GHz
Data rate: AC600
MIMO configuration: 433 Mbps @ 5 GHz @ 1T1R / 150 Mbps @ 2.4 GHz @ 1T1R
IEEE 802.11 PHY Modes: a,b,g,n,ac

Bus 003 Device 003: ID 0bda:a811 Realtek Semiconductor Corp.
Configure Access Point

- One user (tam1111574) reported there's an issue with USB 3.0 port on the XU4:

- All commands must be executed in super user mode.
- You should do `apt update && apt full-upgrade` before proceed.
- It may need to do `apt install libnl-3-dev libnl-genl-3-dev libssl-dev hostapd iptables git pkg-config vim build-essential` to work with.

Configure wireless network interface and dnsmasq daemon.

Configure access point can be divided into the following tasks.

- Setup network interface configuration
- Setup DHCP server configuration
- Setup iptables to forward the internet traffic from Ethernet to wireless lan.
- Setup hostapd server or wpa_supplicant configuration.
- Check service & WIFI configuration

Step 1: Setup network interface configuration.

In order to configure Wireless Access Point you need to provide static IP address to Wireless network card.

Check `wlan0` part of the following contents that you should put.

```
root@odroid:~# vi /etc/network/interfaces
```

```
# interfaces(5) file used by ifup(8) and ifdown(8)
# Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet dhcp

auto wlan0
iface wlan0 inet static
    address 192.168.1.1
    netmask 255.255.255.0
```
Note: The predictable interface names shown as starts with `wlan` suppose you have an interface name.

If your wireless interface name shows like the below's,

```
root@odroid:~# ifconfig
enx7cdd9052131e Link encap:Ethernet  HWaddr 7c:dd:90:52:13:1e
  UP BROADCAST MULTICAST  MTU:1500  Metric:1
  RX packets: errors: dropped:201 overruns: frame:0
  TX packets: errors: dropped: overruns: carrier:0
  collisions: txqueuelen:1000
  RX bytes: (0.0 B)  TX bytes: (0.0 B)
```

Add `net.ifnames=0` as kernel parameter to kernel command line by editing the `boot.ini`. The local interface name issue gets resolved to have predictable name for wireless interface.

```
root@odroid:~# ifconfig
wlan0 Link encap:Ethernet  HWaddr 7c:dd:90:52:13:1e
  UP BROADCAST MULTICAST  MTU:1500  Metric:1
  RX packets: errors: dropped:10 overruns: frame:0
  TX packets: errors: dropped: overruns: carrier:0
  collisions: txqueuelen:1000
  RX bytes: (0.0 B)  TX bytes: (0.0 B)
```

Note: `wlan0` IP address might be different from yours.

Note: Wireless interface name can be changed as it depends on the wireless cards you installed.

Step 2: Setup DHCP server configuration for Access Point.

Configure `dnsmasq` which is a light weight DHCP and DNS server.

```
root@odroid:~# apt install dnsmasq
Reading package lists... Done
Building dependency tree
Reading state information... Done
  upgraded, newly installed, 1 reinstalled, 0 removed, not upgraded.
Need to get 16.2 kB of archives.
After this operation, 0 B of additional disk space will be used.
Fetched 16.2 kB in 1s (15.6 kB/s)
(Reading database ... 155718 files and directories currently installed.)
Preparing to unpack .../dnsmasq_2.79-1_all.deb ...
Unpacking dnsmasq (2.79-1) over (2.79-1) ...
Setting up dnsmasq (2.79-1) ...
Processing triggers for systemd (237-3ubuntu10.9) ...
```
If you faced “FAILED” message when starting up the dnsmasq.service like the below “port 53: Address already in use”.

invoke-rc.d: initscript dnsmasq, action "start" failed.
- dnsmasq.service - dnsmasq - A lightweight DHCP and caching DNS server
 Loaded: loaded (/lib/systemd/system/dnsmasq.service; enabled; vendor preset: enabled)
 Active: failed (Result: exit-code) since Mon 2018-12-10 01:59:06 UTC; 22ms ago
 Process: 2073 ExecStart=/etc/init.d/dnsmasq systemd-exec (code=exited, status=2)
 Process: 2072 ExecStartPre=/usr/sbin/dnsmasq --test (code=exited, status=SUCCESS)

Dec 10 01:59:06 odroid systemd[1]: Starting dnsmasq - A lightweight DHCP and caching DNS server...
Dec 10 01:59:06 odroid dnsmasq[2073]: dnsmasq: syntax check OK.
Dec 10 01:59:06 odroid dnsmasq[2073]: dnsmasq: failed to create listening socket for port 53: Address already in use
Dec 10 01:59:06 odroid dnsmasq[2073]: failed to create listening socket for port 53: Address already in use
Dec 10 01:59:06 odroid dnsmasq[2073]: FAILED to start up
Dec 10 01:59:06 odroid systemd[1]: dnsmasq.service: Control process exited, code=exited status=2
Dec 10 01:59:06 odroid systemd[1]: dnsmasq.service: Failed with result 'exit-code'.
Dec 10 01:59:06 odroid systemd[1]: Failed to start dnsmasq - A lightweight DHCP and caching DNS server.
Processing triggers for systemd (237-3ubuntu10.9) ...

Stop the service listening port 53.

Check that systemd-resolve service is listening port 53 now(127.0.0.53:53)
root@odroid:~# netstat -alnp | grep -w LISTEN
tcp 127.0.0.53:53 LISTEN 0.0.0.0:*
LISTEN 755/systemd-resolve tcp 0.0.0.0:22 LISTEN 0.0.0.0:*
LISTEN 916/sshd tcp 127.0.0.1:531 LISTEN 0.0.0.0:*
LISTEN 2616/cupsd tcp6 :::22 LISTEN :::
LISTEN 916/sshd tcp6 :::1:531 LISTEN :::
LISTEN 2616/cupsd

To use the 53 port, disable & stop the systemd-resolved service
root@odroid:~# systemctl disable systemd-resolved.service
Removed /etc/systemd/system/multi-user.target.wants/systemd-
resolved.service.
Removed /etc/systemd/system/dbus-org.freedesktop.resolve1.service.

root@odroid:~# systemctl stop systemd-resolved

dnsmasq service enable & start
root@odroid:~# systemctl enable dnsmasq
Synchronizing state of dnsmasq.service with SysV service script with /lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable dnsmasq

root@odroid:~# systemctl start dnsmasq
confirm dnsmasq service running
root@odroid:~# netstat -alnp | grep -w LISTEN
tcp 0.0.0.0:53 0.0.0.0:*
LISTEN 6100/dnsmasq
tcp 0.0.0.0:22 0.0.0.0:*
LISTEN 677/sshd
tcp 127.0.0.1:631 0.0.0.0:*
LISTEN 2734/cupsd
tcp6 :::53 ::::*
LISTEN 6100/dnsmasq
tcp6 :::22 ::::*
LISTEN 677/sshd
tcp6 :::1.0.0.1 ::::*
LISTEN 2734/cupsd

Copy **dnsmasq** configuration file to get a backup and then make a new one.

root@odroid:~# mv /etc/dnsmasq.conf /etc/dnsmasq.conf.org
root@odroid:~# vi /etc/dnsmasq.conf

dnsmasq.conf

domain-needed
bogus-priv
no-resolv
no-poll
server=/example.com/192.168.1.5
server=8.8.8.8
server=8.8.4.4
local=/example.com/
address=/doubleclick.net/127.0.0.1
no-hosts
#adn-hosts=/etc/dnmasq.d/hosts.conf
expand-hosts
domain=example.com
dhcp-range=192.168.1.20,192.168.1.50,72h
dhcp-range=tftp,192.168.1.250,192.168.1.254
```
dhcp-option=option:router,192.168.1.1  
dhcp-option=option:ntp-server,192.168.1.5  
dhcp-option=19, # ip-forwarding off  
dhcp-option=44,192.168.1.5 # set netbios-over-TCP/IP aka WINS  
dhcp-option=45,192.168.1.5 # netbios datagram distribution server  
dhcp-option=46,8 # netbios node type
```

Note: You can extend the dhcp-range or change the IP address in the configuration.

Step 3: Setup iptables to forward the internet traffic from Ethernet to wireless LAN

Next, make port forwarding enabled automatically on boot up.

```
root@odroid:~# vi /etc/sysctl.conf
```

Find the options below and change as them.

```
net.ipv4.ip_forward=1  
network.ipv6.conf.all.forwarding=1
```

Add the following contents to /etc/rc.local file in order to redirect internet traffic to wireless lan.

```
root@odroid:~# vi /etc/rc.local
```

```
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
sudo iptables -A FORWARD -i eth0 -o wlan0 -m state --state RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT
```

Note: Update the iptables rules depending on your wireless network interface.

Reboot the system to get work.

```
root@odroid:~# reboot
```

Step 4: Access Point Installation - hostapd

Step 4-1: Setup Hostapd server configuration

hostapd is a user space daemon for access point and authentication servers. It implements IEEE 802.11 access point management, IEEE 802.1X/WPA/WPA2/EAP Authenticators, RADIUS client, EAP server, and RADIUS authentication server.

Steps to get the hostapd compilation. Download the hostapd source code and build with proper parameters.

Wifi Module 0, 4, 5, 5A

```
root@odroid:~# wget https://w1.fi/releases/hostapd-2.6.tar.gz
root@odroid:~# tar xvfz hostapd-2.6.tar.gz
root@odroid:~# cd hostapd-2.6/
root@odroid:~/hostapd-2.6/hostapd# cp defconfig .config
root@odroid:~/hostapd-2.6/hostapd# echo CONFIG_LIBNL32=y >> .config
root@odroid:~/hostapd-2.6/hostapd# echo CONFIG_IEEE80211N=y >> .config
root@odroid:~/hostapd-2.6/hostapd# echo CONFIG_IEEE80211AC=y >> .config
root@odroid:~/hostapd-2.6/hostapd# make
```

Wifi Module 3

You should download a patch file if you use Wifi Module 3 to make hostapd works for Wifi Module 3 which do not support the standard nl80211 driver from hostapd on kernel 3.10, 3.14, 3.16.

```
root@odroid:~# git clone https://github.com/pritambaral/hostapd-rtl871xdrv.git
root@odroid:~# wget https://w1.fi/releases/hostapd-2.6.tar.gz
root@odroid:~# tar xvfz hostapd-2.6.tar.gz
root@odroid:~# cd hostapd-2.6
root@odroid:~/hostapd-2.6# patch -p1 < ../hostapd-rtl871xdrv/rtlxdrv.patch
root@odroid:~/hostapd-2.6# cd hostapd
root@odroid:~/hostapd-2.6/hostapd# cp defconfig .config
root@odroid:~/hostapd-2.6/hostapd# echo CONFIG_LIBNL32=y >> .config
root@odroid:~/hostapd-2.6/hostapd# echo CONFIG_DRIVER_RTW=y >> .config
root@odroid:~/hostapd-2.6/hostapd# make
```

Backup the current hostapd. Replace the file with the configured one.

```
root@odroid:~/hostapd-2.6/hostapd# mv /usr/sbin/hostapd /usr/sbin/hostapd.org
root@odroid:~/hostapd-2.6/hostapd# cp hostapd /usr/sbin/
```

Verify that you have installed the latest version.

```
root@odroid:~/hostapd-2.6/hostapd# cd ~
root@odroid:~# hostapd
hostapd v2.6
User space daemon for IEEE 802.11 AP management,
```
Configure hostapd for Access Point use

```
root@odroid:~# vi /etc/default/hostapd
```

Find the options below and edit.

```plaintext
DAEMON_CONF="/etc/hostapd/hostapd.conf"
DAEMON_OPTS="-B"
```

Note: You can update this DAEMON_OPTS to get the logs from hostapd daemon.

Edit `/etc/hostapd/hostapd.conf` file.

```
root@odroid:~# vi /etc/hostapd/hostapd.conf
```

- If you have trouble with this settings with Wifi module 3, check out the below list.
 - You should build your `rtl871xdrv patched hostapd` and copy that results to `/usr/sbin` directory.
 - Don't forget to comment the codes out in N-WLAN categories.
 - `rtl8192cu, rtl_usb, rtl8192c_common, rtlwifi` modules should be loaded.
 - Or if it still doesn't work and/or if you use kernel version under 4.4, you can try to follow the previous guide: https://wiki.odroid.com/accessory/connectivity/wifi/wlan_ap
 - Also you can try to use a pre-built script: https://github.com/oblique/create_ap

Hostapd configuration for __2.4 Ghz__ configuration

```
hostapd.conf

# HostAPD <2.4 Ghz configuration hostapd.conf file>
# Interface
interface=wlan0
# driver
driver=nl80211
# Logging
logger_syslog=-1
logger_syslog_level=3
logger_stdout=-1
logger_stdout_level=2
# CTRL-Interface
```

http://wiki.odroid.com/
Hostapd configuration for __5 Ghz__ Realtek RTL8812AU chipset

hostapd.conf

```plaintext
ctrl_interface=/var/run/hostapd
ctrl_interface_group=

# WLAN
country_code=KR
ssid=OdroidAPn
ew_mode=g
channel=6
beacon_int=100
dtim_period=2
max_num_sta=255
rts_threshold=2347
fragm_threshold=2346
preamble=1

# WPA2
wpa=2
wpa_passphrase=hardkernel
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP
auth_algs=3
macaddr_acl=
wmm_enabled=1
eap_reauth_period=360000
fragm_threshold=2346
rsn_preauth=1
rsn_preauth_interfaces=wlan0
wpa_group_rekey=600
wpa_ptk_rekey=600
wpa_gmk_rekey=86400

##### If you use Wifi module 3 (RTL8188CUS), you have to comment all the below contents out #####

# N-WLAN
ieee80211n=1
ht_capab=[HT20+][SHORT-GI-20][DSSS_CCK-20]
require_ht=
obss_interval=
```

ssid=Odroid5Ghz
hw_mode=a
channel=36
max_num_sta=128
auth_algs=1
DFS
country_code=KR
ieee80211d=1
ieee80211h=1
#ieee80211lac=1
IEEE 802.11n
ieee80211n=1
ht_capab=[HT40+] [SHORT-GI-20] [SHORT-GI-40] [DSSS_CCK-20]
IEEE 802.11ac
#ieee80211lac=1
#vht_oper_chwidth=1
#vht_capab=[SHORT-GI-40] [RXLDPC] [TX-STBC-2BY1]
#vht_oper_centr_freq_seg0_idx=0
IEEE 802.11i
wpa=2
wpa_key_mgmt=WPA-PSK
wpa_passphrase=hardkernel
rsn_pairwise=CCMP
hostapd event logger
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
WMM
wmm_enabled=1
uapsd_advertisement_enabled=1
wmm_ac_bk_cwmin=4
wmm_ac_bk_cwmax=10
wmm_ac_bk_aifs=7
wmm_ac_bk_txop_limit=
wmm_ac_be_aifs=3
wmm_ac_be_cwmin=4
wmm_ac_be_cwmax=10
wmm_ac_be_txop_limit=
wmm_ac_be_acm=
wmm_ac_vi_aifs=2
wmm_ac_vi_cwmin=3
wmm_ac_vi_cwmax=4
wmm_ac_vi_txop_limit=94
wmm_ac_vi_acm=
wmm_ac_vo_aifs=2
wmm_ac_vo_cwmin=2
wmm_ac_vo_cwmax=3
wmm_ac_vo_txop_limit=47
TX queue parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tx_queue_data3_aifs</td>
<td>7</td>
</tr>
<tr>
<td>tx_queue_data3_cwmin</td>
<td>15</td>
</tr>
<tr>
<td>tx_queue_data3_cwmax</td>
<td>1023</td>
</tr>
<tr>
<td>tx_queue_data3_burst</td>
<td></td>
</tr>
<tr>
<td>tx_queue_data2_aifs</td>
<td>3</td>
</tr>
<tr>
<td>tx_queue_data2_cwmin</td>
<td>15</td>
</tr>
<tr>
<td>tx_queue_data2_cwmax</td>
<td>63</td>
</tr>
<tr>
<td>tx_queue_data2_burst</td>
<td></td>
</tr>
<tr>
<td>tx_queue_data1_aifs</td>
<td>1</td>
</tr>
<tr>
<td>tx_queue_data1_cwmin</td>
<td>7</td>
</tr>
<tr>
<td>tx_queue_data1_cwmax</td>
<td>15</td>
</tr>
<tr>
<td>tx_queue_data1_burst</td>
<td>3.0</td>
</tr>
<tr>
<td>tx_queue_data0_aifs</td>
<td>1</td>
</tr>
<tr>
<td>tx_queue_data0_cwmin</td>
<td>3</td>
</tr>
<tr>
<td>tx_queue_data0_cwmax</td>
<td>7</td>
</tr>
<tr>
<td>tx_queue_data0_burst</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note: On the Wifi module 4 and Wifi module 5, Wifi module 5A, we need to tune these setting depending on the ht_capab.

Note: Replace the country_code, ssid, and wpa_passphrase as per your requirement.

Note: N-WLAN is optional that can be dropped out.

Step 4-2: Check your hostpad & dnsmasq service status

- WIFI IP address must be the same of the set for `/etc/network/interfaces`.

You have to allocate specific IP address you set into the `/etc/network/interfaces` file as a static method to wlan0 interface.

```bash
# Force allocation of IP address
root@odroid:~# ifconfig wlan0 192.168.1.1
```

```bash
# Check IP address
root@odroid:~# ifconfig wlan0
wlan0: flags=883<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 192.168.1.1 netmask 255.255.255.0 broadcast 192.168.1.255
       ether 40:a5:ef:f3:98:6a txqueuelen 1000 (Ethernet)
       RX packets 122 bytes 13344 (13.3 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 49 bytes 18722 (18.7 KB)
```
After you finish all of the setup steps, restart the services and check their statuses.

Enter the following code to enable by default.

```
root@odroid:~# update-rc.d hostapd enable
```

Restart the services.

```
root@odroid:~# service hostapd restart
root@odroid:~# service dnsmasq restart
```

- If you get this message when starting hostapd service, “Failed to start hostapd.service: Unit hostapd.service is masked.”, unmask that service and try it out again.

```
systemctl unmask hostapd.service
```

Check the services.

```
root@odroid:~# service hostapd status
root@odroid:~# service dnsmasq status
```

Check **active (running)** status as shown as the followings.

hostapd
- hostapd.service - LSB: Advanced IEEE 802.11 management daemon
 - Loaded: loaded (/etc/init.d/hostapd; bad; vendor preset: enabled)
 - Active: active (running) since Sun 2017-07-09 19:48:41 UTC; 31s ago
 - Docs: man:systemd-sysv-generator(8)
 - Process: 789 ExecStart=/etc/init.d/hostapd start (code=exited, status=/SUCCESS)
 - CGroup: /system.slice/hostapd.service
 - /usr/sbin/hostapd -B -P /run/hostapd.pid -B /etc/hostapd/hostapd-2.6.conf

Jul 09 19:48:41 odroid systemd[1]: Starting LSB: Advanced IEEE 802.11 management daemon...
Jul 09 19:48:41 odroid hostapd[789]: * Starting advanced IEEE 802.11 management hostapd
Jul 09 19:48:41 odroid hostapd[789]: ...done.

dnsmasq
- dnsmasq.service - dnsmasq - A lightweight DHCP and caching DNS server
Step 4: Access Point Installation - wpa_supplicant

Step 4-1: Setup wpa_supplicant configuration

wpa_supplicant is a user space application which works as a WPA supplicant and SME (to handle initiating MLME commands).

Please refer to the link for further informations:

Steps to get the wpa_supplicant compilation. Download the wpa_supplicant source code and build.

```
root@odroid:~# wget https://w1.fi/releases/wpa_supplicant-2.6.tar.gz
root@odroid:~# tar xvfz wpa_supplicant-2.6.tar.gz
```
Backup the current wpa_supplicant. Replace the file with configured one.

Verify that you have installed the latest version.

Create a config file for wpa_supplicant to run in AP mode. We're going to create that names wpa.conf.

Reboot the system.

Note: You can change the frequency range between 2.4 GHz and 5 GHz.
Confirm them.

```
root@odroid:~# ifconfig wlan0
wlan0:   flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
          inet 192.168.1.1  netmask 255.255.255.0  broadcast 192.168.1.255
          ether 40:a5:ef:f3:98:6a  txqueuelen 1000 (Ethernet)
          RX packets 122  bytes 13344  (13.3 KB)
          RX errors  dropped  overruns  frame
          TX packets 49  bytes 18722  (18.7 KB)
          TX errors  dropped  overruns  carrier  collisions
```

This is an example of starting wpa_supplicant as Access Point.

```
root@odroid:~# wpa_supplicant -Dnl80211 -iwlan0 -c ~/wpa.conf
Successfully initialized wpa_supplicant
Using interface wlan0 with hwaddr 7c:dd:90:52:13:1e and ssid "odroid-WPA"
```

```
wlan0: interface state UNINITIALIZED->ENABLED
wlan0: AP-ENABLED
wlan0: CTRL-EVENT-CONNECTED - Connection to 7c:dd:90:52:13:1e completed [id=
        id_str=
```

Start Wpa_supplicant as a server

Append the following in /etc/rc.local file

```
sudo service network-manager stop
wpa_supplicant -B -Dnl80211 -iwlan0 -c /root/wap.conf
```

Alternative/Easier Ways For Access Point Configuration

This script creates a NATed or Bridged WiFi Access Point.

From:
http://wiki.odroid.com/ - ODROID Wiki

Permanent link:
http://wiki.odroid.com/accessory/connectivity/wifi/wireless_ap_mode

Last update: 2019/03/05 01:05